CHAPITRE 14

Thermodynamique

des processus irréversibles

14.1 Equation de diffusion de la chaleur

Yrodoke . Montrer que le profil de température (12.56),

c >\ D x?
Tt == o~ 1) = ar P ("

ou T est la température et x la coordonnée spatiale, est une solution de ’équa-
tion de diffusion de la chaleur (12.47).

Solution

Pour montrer que le profil de température T (x, t) est une solution de I’équation
de diffusion de la chaleur (12.47), on doit calculer les dérivées partielles de cette
fonction. La dérivée partielle de la température T' par rapport au temps ¢ est
donnée par,
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La dérivée partielle premiere de la température T' par rapport a la position x

s’écrit,
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ce qui implique que le produit de A\ et de la dérivée partielle seconde de la
température T par rapport a la position z est donné par,
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Ainsi, on trouve que les expressions pour 9T/t et A 9*T/dx? sont identiques,
ce qui établit que le profil de température T (z,t) est une solution de I’équation
de diffusion de la chaleur (12.47).

14.2 Equation de la chaleur avec une source de chaleur

WYok L’équation de diffusion de la chaleur a été établie au para-
graphe 12.4.2, en I'absence de terme de source lié au transport des électrons de
conduction. On considere que le potentiel chimique des électrons est négligeable
par rapport au potentiel électrostatique, c’est-a-dire que p. < ge .

1) Montrer que la densité de puissance dissipée s’écrit,
Ps = — V : Ju

2) A Daide de la densité de puissance dissipée (12.129),

i

ps =k V2T — Ty VT +=—
o

en déduire que pour un conducteur électriquement neutre traversé par une

densité de courant électrique conductif j,, '’équation de la chaleur devient,

.2
oT = v2T- j vr+le

Ce Ce T

ou A est la diffusivité thermique, o est la conductivité électrique, ¢ est le
coefficient Seebeck, 7 est le coefficient de Thomson du conducteur électrique
et c. est la densité de capacité thermique des électrons de conduction.
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Solution

1)

Dans le référentiel du conducteur électrique, c’est-a-dire v = 0, et en ab-
sence de contrainte mécanique exercée sur le métal, c’est-a-dire o, = 0,
léquation de continuité pour I’énergie interne (11.54) se réduit a,

Comme le conducteur électrique est électriquement neutre, la charge élec-
trique des électrons de conduction est constante,

q=0

Compte tenu de la limite pe < g, la dérivée temporelle de 1’équa-
tion d’Euler densitaire volumique (11.98) pour les électrons de conduction
s’écrit,

W=Té+jene=Ts+¢pq=T5s

Ainsi, la densité de puissance dissipée (12.121) devient,
ps=Ts$=u=-V-7,

Dans le référentiel du conducteur électrique, on a v = 0. Compte tenu de la
relation (12.43), la dérivée temporelle de la densité d’énergie interne s’écrit,

’l.l,:atu:CeatT

Ainsi, I’équation de continuité de I’énergie interne devient,

1 . s

(& €

La densité de puissance dissipée (12.129) s’écrit,

ﬁ

ps=kV>T— 715, -VT+
(o2

Compte tenu du coefficient de diffusivité thermique (12.46), en substituant
la densité de puissance dissipée dans 1’équation de continuité de 1’énergie
interne, on obtient ’équation de la chaleur,

.2
T .
KT =\V>T — —Jq~VT+J—q
Ce Ce O
Elle contient deux termes de source de chaleur liés au transport des élec-
trons de conduction décrit par la densité de courant électrique j, : un
premier terme lié a ’effet Thomson et un deuxieme terme associé a 'effet
Joule.
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14.3 Générateur Peltier

Yorrdr . Un générateur Peletier est constitué de deux éléments thermoélec-
triques reliés en série (fig. 14.1). Le coté gauche du générateur est maintenu
& une température T et le coté droit, & une température 7. Le courant
électrique I généré par le générateur Peltier circule a travers les matériaux
thermoélectriques dénotés 1 et 2. La plaque chauffée & température T relie
électriquement les deux matériaux, mais elle n’est pas électriquement accessible
a I'utilisateur. Son potentiel électrique est V+. Les autres extrémités des ma-
tériaux thermoélectriques sont du coté froid, a température T~ . Ils sont reliés
aux bornes électriques du dispositif. Une résistance de charge Ry est reliée a ces
bornes. La tension V est la différence de potentiel électrique entre les bornes.

V+
Tt Tt
I
1 2
I
-
V=0 , ,
i —/\/\/\/— T f—ov
R()
= -

Fig. 14.1 Un générateur Peltier a une charge représentée par la résistance Ry reliée aux
bornes. V est la tension entre les bornes. Le pont électrique & V1 n’est pas accessible &
l'utilisateur. Les régions notées 1 et 2 représentent les deux matériaux thermoélectriques. Les
régions notées T et T~ sont les cotés chaud et froid du dispositif.

On analyse le fonctionnement de ce générateur a I’aide des équations de trans-
port de la charge électrique et de la chaleur,
jq12—0'161VT1—01V301 et lez_FﬁVTl"_TlEqul
jq2:70'262VT270'2Vg02 et jQ2:7H2VT2+T2€2jq2

Les matériaux thermoélectriques 1 et 2 ont une longueur d et une section
d’aire A, ce qui peut s’écrire comme,

d
d:/ dr - 7 A:/dS-'F
0 S

ol 7 est un vecteur unitaire orienté dans le sens des aiguilles d’une montre
le long de la densité de courant électrique j,, et les vecteurs infinitésimaux
de longueur et de surface dr et dS sont orientés dans la méme direction. La
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différence de température entre le c6té chaud et le coté froid s’écrit,
d d
AT:T+—T_:/ dr-Vle/ dr - (= VT3)
0 0

De maniere similaire, les différences de potentiel électrique A @1 et A @9 entre
les cotés chaud et froid s’écrivent,

d
A¢1:V+:/ dr -V ¢
0

d
Apy=VT— V:/ dr - (= V ¢2)
0

La conservation de la charge électrique implique que les densités de courant
électrique sont les mémes pour chaque matériau, c’est-a-dire j,, = j,,. Le
courant électrique I traversant les matériaux 1 et 2 est donné par l'intégrale
des densités de courant électrique j,, et j,, sur la surface A de la section,

I:/qu.dS:/jq2~dS
S S

D’apres la relation (11.122), les courants de chaleur I, et I, sont les intégrales
des densités de courant de chaleur jq, et jq,, traversant les matériaux 1 et 2,
sur la surface A de la section,

IQI:/ (_jQ1)'dS Isz/jQz'dS
S S

Déterminer :
1) le courant de chaleur I&? appliqué sur le coté chaud du dispositif lorsque
aucun courant électrique ne le traverse ;

2) la résistance électrique R des deux matériaux thermoélectriques lorsque
les températures sont égales, c’est-a-dire T+ = T, et qu’aucun courant
électrique ne traverse la résistance Ry, c’est-a-dire lorsque Ry = oco. Dans
ce cas, un courant électrique traverse les matériaux thermoélectriques sans
traverser la résistance ;

3) le courant électrique I en termes de la différence de température AT ;

4) le rendement thermodynamique du générateur défini comme,

Ry I?
=

olt ici, I est le courant chaleur du coté chaud a température T lorsque le
courant électrique traverse le dispositif. Montrer que la résistance de charge

optimale s’écrit,
Ro=R+\14+¢
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N N . . 7 1
otl ¢ est un parameétre sans dimension donné par”’,

T+ (81 — 82)2

C: (k1 + K2) <1+1>

o1 02

Solution

D

Afin de déterminer le courant de chaleur Iég lorsque aucun courant élec-
trique ne circule dans le circuit, c’est-a-dire lorsque j,, = j,, = 0, on
integre les équations de transport sur le volume V. Les intégrales sur le vo-
lume sont le produit des intégrales sur la section d’aire A et des intégrales
sur la longueur d des matériaux thermoélectriques,

d d
/(_j,Ql)'dS/ dr-fzm/ dr-VT1/dS-
S 0 0 S
d d
/j/QQ-dS/ dr%zm/ dr~(—VT2)/ds.
s 0 0 s

ce qui se réduit a,

>

=

A A
P{lelﬂ‘/lgAT Pé?QZHQEAT

Ainsi, le courant de chaleur total est donnée par,

Tty = Iy, + I, = (s + 52) 7 AT
Si les températures des sources chaude et froide sont égales, c’est-a-dire
si Tt = T, les gradients de température s’annulent, c’est-a-dire V1; =
V1T, = 0, ce qui implique qu’il n’y a pas d’effet thermoélectrique. Les
intégrales des équations de transport de la charge électrique sur le volume
sont le produit des intégrales sur la section d’aire A et des intégrales sur la
longueur d des matériaux thermoélectriques,

d d
/(qul)-dS/ dr-ﬁ:al/ dr.vgpl/ds.f
S 0 0 S
d d
/(—jq2)~d5’/ d7'~'F:—ag/ dr-(—vm)/ds-f
S 0 0 S

Etant donné que la résistance de charge est infinie, c’est-a-dire que Ry = oo,
le courant électrique utilisé pour la mesure de la résistance du dispositif
circule dans la direction opposée, I — — I compte tenu de la condition

SR & N Goldsmid, Introduction to Thermoelectricity, Springer, 2010.
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V* < V. Dans ce cas, les équations de transport de la charge électrique
intégrées sur le volume se réduisent a,

A A
o1 AP UldV

A A
szdggAgD2:7025(V+* V)

La différence de potentiel électrique entre les extrémités des matériaux

thermoélectriques 1 et 2 branchés en série est donnée par,

d (1 1 2d 1
V=Api—Apg=1—|—+—|=1——
a1 72 A<01+02) Ao

ou o est la conductivité effective des deux matériaux thermoélectriques.
Etant donné que la résistivité électrique p est l'inverse de la conductivité
électrique effective p,

IR VR I A B
p—2p1 p2—0—2 o1 09

Ainsi, la différence de potentiel électrique entre les extrémités des matériaux
thermoélectriques s’écrit,
2d
V=p—I=RI

ou 2d est la longueur effective des deux matériaux de longueur d chacun, de
section d’aire A, branchés en série, et R est leur résistance effective. Ainsi,

R 2d (1 + p2) d (1 . 1)\ d
—PA—Pl PzA— o1 o) A
Les intégrales des équations de transport de la charge électrique sur le

volume sont le produit des intégrales sur la section d’aire A et des intégrales
sur la longueur d des matériaux thermoélectriques,

d d
/qu-dS/ dr-f:—alal/ dr-VTl/alS-v2
S 0 0 S
d
—01/ dr-thl/dS~ﬁ
0 S
d d
/]quS/ d’l"-f‘ZO'gEg/ d?"(—VTQ)/dST‘A
S 0 0 S

d
+O’2/ d’l"(—V(pg)/dS’F
0 S

Les équations de transport de la charge électrique intégrées sur le volume
se réduisent a,

A A
12—01615AT— UlEV+

IZUQEQ%AT—i-Ugg (V+— V)
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La loi d’Ohm pour la résistance de charge s’écrit,
V=Rgl

Compte tenu de cette relation qui caractérise les propriétés électriques de
la résistance de charge, les équations de transport de la charge électrique
peuvent étre mises sous la forme suivante,

1 /d
V+_m(AI+01€1AT>

vVt = i <<j+0’2Ro>I— 0'262AT>

02
ce qui implique que le courant électrique est donné par,

€9 — &1 AT_EQ—El

1 1\d  R+R
(+)+Ro i
g1 g9 A

AT

I =

Ce résultat pour le courant I est cohérent avec ’expression du courant
obtenue en analysant la boucle de Seebeck (sect. 12.6.1), qui est équivalent
a un générateur Peltier (fig. 14.1) pour lequel la résistance de charge est
mise & zéro, c’est-a-dire que Ry = 0.

4) Afin de déterminer le courant de chaleur I qui entre & travers la plaque
chaude & température 7", on intégre les équations de transport de la cha-
leur sur le volume V. Les intégrales sur le volume sont le produit des
intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,

d d
/(—le)-dS/ dr -7 = K dr-VTl/dS-f
S 0 0 S
d
7T+51/qu~ds/ dr - #
S 0
d d
/jQz'dS-/ dr~r“:/<;2/ dr'(—VTQ)/dSHF
S 0 0 S

d
+T+€2/jq2-dS/ dr -
s 0

A
IlelilEAT—TJr&lI

A
IQ2 ZKQEAT—FT-FEQI

i

qui se réduit a,

et implique que,

A
IQ:IQ1 +IQ2 :(H1+R2)EAT+T+(EQ— 61)[
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Par conséquent, le rendement 7 pour une résistance de charge Ry est donné
par,
R (52 — 61)2 AT2
o 2 =8
 RyI? (R + Ry)*

Ig A 9 AT
AT LT+ _ =
(Iil + /*62) d + (62 51) R+ Ry
qui peut étre mis sous la forme,
Ry
AT R

T G R (e )

A T’aide de la définition du coefficient ¢ > 0, de la différence de température
AT =T+t — T~ > 0 et du rapport r = 1 + Ro/R > 0, le rendement se

réduit a,
T r—1
n=\1- 7| ===
T+ ) ("1r2 47

Afin de trouver la résistance de charge optimale, on doit optimiser le ren-
dement 7 par rapport au rapport r,

dn ) T §_1r2+r—(r—1)(2g‘_1r+1)7
d< T+> (2 +r) -

ce qui implique que,
r?—2r— (=0

Ainsi, le rapport optimal r > 0, est donné par,

r=14++1+(

Par conséquent, pour une résistance de charge optimale, le rendement est
donné par,

(-5 o
(I+vITQ) +C(1+vite  T7

T+
Dans la limite ( — oo, le rendement du générateur Peltier n tend vers le
rendement de Carnot n¢ (7.63),

li 1 _
mn=1— — =
¢ n= 7+ e

14.4 Jonction thermoélectrique

YYowr  On consideére un barreau constitué de deux métaux différents A et B
d’épaisseur d en contact thermique. Les métaux sont définis par leur conducti-
vité électrique o4 ou opg, leur conductivité thermique k4 ou kg, et leur coeffi-
cient Seebeck €4 ou ep. Ces propriétés peuvent toutes étre considérées comme
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indépendantes de la température. L’extrémité du métal A est en contact avec
un bain thermique a haute température et I'extrémité du métal B est en contact
avec un bain thermique & basse température, ce qui impose une différence de
température AT a travers le barreau. Une densité de courant électrique j,
constante traverse le barreau. On mesure une différence de potentiel électro-
statique Ay entre les extrémités du barreau (fig. 14.2).

AT

A
\ 4

jQ_> 0A>€AsFA 9B;€B, KB

< »
- »

Fig. 14.2 Un courant électrique traverse un barreau formé de deux métaux différents A
et B en contact électrique. La figure indique les variations de potentiel électrostatique et de
température a travers chaque métal. L’origine de l'axe Or est située a la jonction entre les
deux métaux.

Par conservation de la charge électrique en régime stationnaire, la densité de
courant électrique j, et la densité de courant de chaleur ]Q sont conservées
a la jonction entre les métaux A et B, c’est-a-dire que j, = j,, = J,, ©
Jo =Jg. = Jqy- Le courant électrique I qui traverse les métaux A et B est
l'intégrale des densités de courant j,, et j,, sur la surface A de la section,

I:/qu~dS:/qu~dS
S S

ou le vecteur de surface infinitésimale dS est orienté le long de la densité de
courant électrique j,. Le courant de chaleur I exercé sur les métaux A et B
est I'intégrale des densités de courant de chaleur jq, et jg, sur la surface A

de la section,
s s

Les différences de température AT4 et ATpg, et les différences de potentiel
électrostatique A w4 et A pp a travers les métaux A et B sont données par,

0 d
ATA:/ d’l"~(—VTA) et ATB:/ dr'(—VTB)
—d 0

0 d
A<pA:/ dr- (= Va) et A@B:/ dr - (—Vg)
—d 0

ol le vecteur de longueur infinitésimale dr est orienté le long de la densité de
courant électrique j, et de la densité de courant de chaleur j,. La différence
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de température AT et la différence de potentiel électrostatique Ay a travers
tout le barreau satisfont,

AT = AT, + ATg et Ap =Apys + App

Les métaux A et B ont une longueur d et une section de surface A. Ainsi,

0 d
d:/ dr~ﬁ:/ dr -7 et A:/d5’~ﬁ
—d 0 s

ou 7 est le vecteur unitaire orienté de la gauche vers la droite dans le méme
sens que la densité de courant électrique j, et la densité de courant de chaleur

Jq-

1) Exprimer les équations de transport de la charge électrique et de la cha-
leur (12.117) pour les métaux A et B & la jonction entre les métaux en
termes des forces généralisées V14, VIg, Vpa, V pp et de la tempéra-
ture T4 p evaluée a la jonction entre les métaux.

2) Si I’épaisseur d des métaux est suffisamment petite, les gradients peuvent
étre considérés comme indépendants de la position. Dans ce cas, intégrer
I’équation de transport de la charge électrique entre les extrémités des mé-
taux A et B.

3) Dans ce méme cas, intégrer I’équation de transport de la chaleur entre les
extrémités des métaux A et B.

4) En déduire les expressions de ATy et ATp en termes de I, AT et des
coefficients phénoménologiques.

5) En déduire les expressions de Apa et App en termes de I, AT et des
coefficients phénoménologiques.

6) Déterminer expression de Ay en termes de Tap, I, AT et des coefficients
phénoménologiques.

Solution

1) Les équations de transport de la charge électrique & travers les métaux A
et B a la jonction entre ces métaux s’écrivent,

Jga=—04aVTa—0aVpa
qu = —JBEBVTB — UBV(,OB

De maniere similaire, les équations de transport de la chaleur a travers les
métaux A et B a la jonction entre ces métaux s’écrivent,

Jo.=—kaVTa+Tapeayj,
Jop, =—tBVIp+Tapepj,

2) Les intégrales des équations de transport de la charge électrique sur le
volume sont le produit des intégrales sur la section de surface A et des
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intégrales sur la longueur d des métaux,

0 0
/qu~dS/ dr-f'zaAsA/ dr-(—VTA)/dS-r“
S —d —d S

+o4a /_0 dr-(—chA)/ as -

S

d
/qu‘dS/ dr’f’:UB&?B/ dr'(*VTB)/dS~f
S 0 0 S

d
+UB/ dr-(—VgoB)/dS~f
0 s

>

En utilisant les relations intégrales pour I, AT, ATg, Apa et App, Uinté-
grale de ’équation de transport de la charge électrique a travers les métaux
A et B peut étre mise sous la forme suivante,

A A
I= i (cacaATA+04Apa) = i (cpep AT + o App)

3) Les intégrales des équations de transport de la chaleur sur le volume sont
le produit des intégrales sur la section de surface A et des intégrales sur la
longueur d des métaux,

0 0
/jQA-dS/ dr-f:nA/ dr~(—VTA)/dS~ﬁ
S —d —d S
0
+TABEA/qu'dS/ dr -7
S —d
d d
/jQB-dS/ dr-f:m;/ dr-(—VTB)/dS-f
S 0 0 S

d
+TABEB/qu~dS/ dr - 7
S 0

En utilisant les relations intégrales pour I, I, AT4 et AT'g, I'intégrale de
I’équation de transport de la chaleur a travers les métaux A et B peut étre
mise sous la forme suivante,

A A
IQ:"@AEATA‘FTAB EAI:HBEATBJ"TAB epl

4) En utilisant la relation AT = AT — AT, dans ’équation de transport de
la chaleur, on obtient,

d d
kA AT+ Tap SAZI:HB(AT_ ATA)“V‘TABEBZI

qui peut étre mis sous la forme suivante,

EB — €4 d KB
ATy= —""—Typ—1+ —"— AT
A KA+ KB AB Y Jr/fA—&—/@B



Jonction thermoélectrique 13

En utilisant la relation AT4 = AT — ATpg dans ’équation précédente, on

obtient,

- d
A p S A

- —= AT
KA+ KB A KA+ KB

ATg =

5) En substituant ’expression pour AT, dans I’équation de transport de la
charge électrique, on obtient,

EARB A

— A
calep — ca) Tapl+oa — AT + 04— Apa

I:
74 KA+ KB KA+ kB d d

qui peut étre mis sous la forme suivante,

1 ealep — €a) d €AKB
Apy=(—-ABZ A p Vo7 SATE AT
L (O’A KA+ KB AB A KA+ KB

De maniere similaire, en substituant I’expression pour ATz dans I’équation
de transport de la charge électrique, on obtient,
EBRA A

— A
MTABI+O'B *ATﬁLO'BEA(pB

=0
B KA+ KB Ka+ kB d

qui peut étre mis sous la forme suivante,
1 eplea— ¢ d €
App = (_ B(AB)TAB>[_ _EBRA Ap
oB KA+ KB A KA+ KB

6) Une expression de la différence de potentiel électrostatique Ay entre les
extrémités du barreau est obtenue en substituant les expressions pour A 4
et App dans I'équation Ap = Apy + App,

1 1 ea— ep)’
A(P: [<+)+MTAB
KA+ KB

ﬂji EAKB tEBKA

AT
A KA+ KB

Le premier terme entre crochets représente la loi d’Ohm. Le dernier terme
de ’équation représente 'effet Seebeck. Le deuxieme terme entre crochets
a pour origine les gradients thermiques dans chaque métal, méme dans le
cas ot AT = 0.

S Gravier, S. Serrano-Guisan, F. Reuse, J.-Ph. Ansermet, “Spin-Dependent Peltier Effect

of Perpendicular Currents in Multilayered Nanowires”, Phys. Rev., B 73, 2006, 052410.



