
Chapitre 14

Thermodynamique

des processus irréversibles

14.1 Équation de diffusion de la chaleur

Montrer que le profil de température (12.56),
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où T est la température et x la coordonnée spatiale, est une solution de l’équa-
tion de diffusion de la chaleur (12.47).

14.1 Solution

Pour montrer que le profil de température T (x, t) est une solution de l’équation
de diffusion de la chaleur (12.47), on doit calculer les dérivées partielles de cette
fonction. La dérivée partielle de la température T par rapport au temps t est
donnée par,
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La dérivée partielle première de la température T par rapport à la position x
s’écrit,
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ce qui implique que le produit de λ et de la dérivée partielle seconde de la
température T par rapport à la position x est donné par,
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Ainsi, on trouve que les expressions pour ∂T/∂t et λ∂2T/∂x2 sont identiques,
ce qui établit que le profil de température T (x, t) est une solution de l’équation
de diffusion de la chaleur (12.47).

14.2 Équation de la chaleur avec une source de chaleur

L’équation de diffusion de la chaleur a été établie au para-
graphe 12.4.2, en l’absence de terme de source lié au transport des électrons de
conduction. On considère que le potentiel chimique des électrons est négligeable
par rapport au potentiel électrostatique, c’est-à-dire que µe ≪ qe φ.

1) Montrer que la densité de puissance dissipée s’écrit,

ps = −∇ · ju

2) À l’aide de la densité de puissance dissipée (12.129),

ps = κ∇2 T − τ jq ·∇T +
j2q
σ

en déduire que pour un conducteur électriquement neutre traversé par une
densité de courant électrique conductif jq, l’équation de la chaleur devient,

∂t T = λ∇2 T − τ

ce
jq ·∇T +

j2q
ce σ

où λ est la diffusivité thermique, σ est la conductivité électrique, ε est le
coefficient Seebeck, τ est le coefficient de Thomson du conducteur électrique
et ce est la densité de capacité thermique des électrons de conduction.
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14.2 Solution

1) Dans le référentiel du conducteur électrique, c’est-à-dire v = 0, et en ab-
sence de contrainte mécanique exercée sur le métal, c’est-à-dire σu = 0,
l’équation de continuité pour l’énergie interne (11.54) se réduit à,

u̇ = −∇ · ju

Comme le conducteur électrique est électriquement neutre, la charge élec-
trique des électrons de conduction est constante,

q̇ = 0

Compte tenu de la limite µe ≪ qe φ, la dérivée temporelle de l’équa-
tion d’Euler densitaire volumique (11.98) pour les électrons de conduction
s’écrit,

u̇ = T ṡ+ µ̄e ṅe = T ṡ+ φ q̇ = T ṡ

Ainsi, la densité de puissance dissipée (12.121) devient,

ps = T ṡ = u̇ = −∇ · ju

2) Dans le référentiel du conducteur électrique, on a v = 0. Compte tenu de la
relation (12.43), la dérivée temporelle de la densité d’énergie interne s’écrit,

u̇ = ∂t u = ce ∂t T

Ainsi, l’équation de continuité de l’énergie interne devient,

∂t T = − 1

ce
(∇ · ju) =

ps
ce

La densité de puissance dissipée (12.129) s’écrit,

ps = κ∇2 T − τ jq ·∇T +
j2q
σ

Compte tenu du coefficient de diffusivité thermique (12.46), en substituant
la densité de puissance dissipée dans l’équation de continuité de l’énergie
interne, on obtient l’équation de la chaleur,

∂t T = λ∇2 T − τ

ce
jq ·∇T +

j2q
ce σ

Elle contient deux termes de source de chaleur liés au transport des élec-
trons de conduction décrit par la densité de courant électrique jq : un
premier terme lié à l’effet Thomson et un deuxième terme associé à l’effet
Joule.
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14.3 Générateur Peltier

Un générateur Peletier est constitué de deux éléments thermoélec-
triques reliés en série (fig. 14.1). Le côté gauche du générateur est maintenu
à une température T+ et le côté droit, à une température T−. Le courant
électrique I généré par le générateur Peltier circule à travers les matériaux
thermoélectriques dénotés 1 et 2. La plaque chauffée à température T+ relie
électriquement les deux matériaux, mais elle n’est pas électriquement accessible
à l’utilisateur. Son potentiel électrique est V +. Les autres extrémités des ma-
tériaux thermoélectriques sont du côté froid, à température T−. Ils sont reliés
aux bornes électriques du dispositif. Une résistance de charge R0 est reliée à ces
bornes. La tension V est la différence de potentiel électrique entre les bornes.

I
1 2

I

R0

V +

T –

T + T +

T – T – V
V = 0

Fig. 14.1 Un générateur Peltier a une charge représentée par la résistance R0 reliée aux
bornes. V est la tension entre les bornes. Le pont électrique à V + n’est pas accessible à
l’utilisateur. Les régions notées 1 et 2 représentent les deux matériaux thermoélectriques. Les
régions notées T+ et T− sont les côtés chaud et froid du dispositif.

On analyse le fonctionnement de ce générateur à l’aide des équations de trans-
port de la charge électrique et de la chaleur,

jq1 = −σ1 ε1 ∇T1 − σ1 ∇φ1 et jQ1
= −κ1 ∇T1 + T1 ε1 jq1

jq2 = −σ2 ε2 ∇T2 − σ2 ∇φ2 et jQ2
= −κ2 ∇T2 + T2 ε2 jq2

Les matériaux thermoélectriques 1 et 2 ont une longueur d et une section
d’aire A, ce qui peut s’écrire comme,

d =

∫ d

0

dr · r̂ A =

∫
S

dS · r̂

où r̂ est un vecteur unitaire orienté dans le sens des aiguilles d’une montre
le long de la densité de courant électrique jq, et les vecteurs infinitésimaux
de longueur et de surface dr et dS sont orientés dans la même direction. La
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différence de température entre le côté chaud et le côté froid s’écrit,

∆T = T+ − T− =

∫ d

0

dr ·∇T1 =

∫ d

0

dr · (−∇T2)

De manière similaire, les différences de potentiel électrique ∆φ1 et ∆φ2 entre
les côtés chaud et froid s’écrivent,

∆φ1 = V + =

∫ d

0

dr ·∇φ1

∆φ2 = V + − V =

∫ d

0

dr · (−∇φ2)

La conservation de la charge électrique implique que les densités de courant
électrique sont les mêmes pour chaque matériau, c’est-à-dire jq1 = jq2 . Le
courant électrique I traversant les matériaux 1 et 2 est donné par l’intégrale
des densités de courant électrique jq1 et jq2 sur la surface A de la section,

I =

∫
S

jq1 · dS =

∫
S

jq2 · dS

D’après la relation (11.122), les courants de chaleur IQ1
et IQ2

sont les intégrales
des densités de courant de chaleur jQ1

et jQ2
, traversant les matériaux 1 et 2,

sur la surface A de la section,

IQ1 =

∫
S

(
− jQ1

)
· dS IQ2 =

∫
S

jQ2
· dS

Déterminer :

1) le courant de chaleur I ′Q appliqué sur le côté chaud du dispositif lorsque
aucun courant électrique ne le traverse ;

2) la résistance électrique R des deux matériaux thermoélectriques lorsque
les températures sont égales, c’est-à-dire T+ = T−, et qu’aucun courant
électrique ne traverse la résistance R0, c’est-à-dire lorsque R0 = ∞. Dans
ce cas, un courant électrique traverse les matériaux thermoélectriques sans
traverser la résistance ;

3) le courant électrique I en termes de la différence de température ∆T ;

4) le rendement thermodynamique du générateur défini comme,

η =
R0 I

2

IQ

où ici, IQ est le courant chaleur du côté chaud à température T+ lorsque le
courant électrique traverse le dispositif. Montrer que la résistance de charge
optimale s’écrit,

R0 = R
√

1 + ζ
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où ζ est un paramètre sans dimension donné par
(1)
,

ζ =
T+ (ε1 − ε2)

2

(κ1 + κ2)

(
1

σ1
+

1

σ2

)

14.3 Solution

1) Afin de déterminer le courant de chaleur I ′Q lorsque aucun courant élec-
trique ne circule dans le circuit, c’est-à-dire lorsque jq1 = jq2 = 0, on
intègre les équations de transport sur le volume V . Les intégrales sur le vo-
lume sont le produit des intégrales sur la section d’aire A et des intégrales
sur la longueur d des matériaux thermoélectriques,∫

S

(
− j′Q1

)
· dS

∫ d

0

dr · r̂ = κ1

∫ d

0

dr ·∇T1

∫
S

dS · r̂∫
S

j′Q2
· dS

∫ d

0

dr · r̂ = κ2

∫ d

0

dr · (−∇T2)

∫
S

dS · r̂

ce qui se réduit à,

P ′
Q1

= κ1
A

d
∆T P ′

Q2
= κ2

A

d
∆T

Ainsi, le courant de chaleur total est donnée par,

I ′Q = I ′Q1
+ I ′Q2

= (κ1 + κ2)
A

d
∆T

2) Si les températures des sources chaude et froide sont égales, c’est-à-dire
si T+ = T−, les gradients de température s’annulent, c’est-à-dire ∇T1 =
∇T2 = 0, ce qui implique qu’il n’y a pas d’effet thermoélectrique. Les
intégrales des équations de transport de la charge électrique sur le volume
sont le produit des intégrales sur la section d’aire A et des intégrales sur la
longueur d des matériaux thermoélectriques,∫

S

(
− jq1

)
· dS

∫ d

0

dr · r̂ = σ1

∫ d

0

dr ·∇φ1

∫
S

dS · r̂∫
S

(
− jq2

)
· dS

∫ d

0

dr · r̂ = −σ2

∫ d

0

dr · (−∇φ2)

∫
S

dS · r̂

Étant donné que la résistance de charge est infinie, c’est-à-dire que R0 = ∞,
le courant électrique utilisé pour la mesure de la résistance du dispositif
circule dans la direction opposée, I → − I compte tenu de la condition

(1)
H. J. Goldsmid, Introduction to Thermoelectricity, Springer, 2010.
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V + < V . Dans ce cas, les équations de transport de la charge électrique
intégrées sur le volume se réduisent à,

I = σ1
A

d
∆φ1 = σ1

A

d
V +

I = −σ2
A

d
∆φ2 = −σ2

A

d

(
V + − V

)
La différence de potentiel électrique entre les extrémités des matériaux
thermoélectriques 1 et 2 branchés en série est donnée par,

V = ∆φ1 − ∆φ2 = I
d

A

(
1

σ1
+

1

σ2

)
= I

2 d

A

1

σ

où σ est la conductivité effective des deux matériaux thermoélectriques.
Étant donné que la résistivité électrique ρ est l’inverse de la conductivité
électrique effective ρ,

ρ =
1

2
(ρ1 + ρ2) =

1

σ
=

1

2

(
1

σ1
+

1

σ2

)
Ainsi, la différence de potentiel électrique entre les extrémités des matériaux
thermoélectriques s’écrit,

V = ρ
2 d

A
I = RI

où 2 d est la longueur effective des deux matériaux de longueur d chacun, de
section d’aire A, branchés en série, et R est leur résistance effective. Ainsi,

R = ρ
2 d

A
= (ρ1 + ρ2)

d

A
=

(
1

σ1
+

1

σ2

)
d

A

3) Les intégrales des équations de transport de la charge électrique sur le
volume sont le produit des intégrales sur la section d’aire A et des intégrales
sur la longueur d des matériaux thermoélectriques,∫

S

jq1 · dS
∫ d

0

dr · r̂ = −σ1 ε1

∫ d

0

dr ·∇T1

∫
S

dS · r̂

− σ1

∫ d

0

dr ·∇φ1

∫
S

dS · r̂∫
S

jq2 · dS
∫ d

0

dr · r̂ = σ2 ε2

∫ d

0

dr · (−∇T2)

∫
S

dS · r̂

+ σ2

∫ d

0

dr · (−∇φ2)

∫
S

dS · r̂

Les équations de transport de la charge électrique intégrées sur le volume
se réduisent à,

I = −σ1 ε1
A

d
∆T − σ1

A

d
V +

I = σ2 ε2
A

d
∆T + σ2

A

d

(
V + − V

)
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La loi d’Ohm pour la résistance de charge s’écrit,

V = R0 I

Compte tenu de cette relation qui caractérise les propriétés électriques de
la résistance de charge, les équations de transport de la charge électrique
peuvent être mises sous la forme suivante,

V + = − 1

σ1

(
d

A
I + σ1 ε1 ∆T

)
V + =

1

σ2

((
d

A
+ σ2 R0

)
I − σ2 ε2 ∆T

)
ce qui implique que le courant électrique est donné par,

I =
ε2 − ε1(

1

σ1
+

1

σ2

)
d

A
+R0

∆T =
ε2 − ε1
R+R0

∆T

Ce résultat pour le courant I est cohérent avec l’expression du courant
obtenue en analysant la boucle de Seebeck (sect. 12.6.1), qui est équivalent
à un générateur Peltier (fig. 14.1) pour lequel la résistance de charge est
mise à zéro, c’est-à-dire que R0 = 0.

4) Afin de déterminer le courant de chaleur IQ qui entre à travers la plaque
chaude à température T+, on intègre les équations de transport de la cha-
leur sur le volume V . Les intégrales sur le volume sont le produit des
intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,∫

S

(
− jQ1

)
· dS

∫ d

0

dr · r̂ = κ1

∫ d

0

dr ·∇T1

∫
S

dS · r̂

− T+ ε1

∫
S

jq1 · dS
∫ d

0

dr · r̂∫
S

jQ2
· dS

∫ d

0

dr · r̂ = κ2

∫ d

0

dr · (−∇T2)

∫
S

dS · r̂

+ T+ ε2

∫
S

jq2 · dS
∫ d

0

dr · r̂

qui se réduit à,

IQ1 = κ1
A

d
∆T − T+ ε1 I

IQ2
= κ2

A

d
∆T + T+ ε2 I

et implique que,

IQ = IQ1
+ IQ2

= (κ1 + κ2)
A

d
∆T + T+ (ε2 − ε1) I
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Par conséquent, le rendement η pour une résistance de charge R0 est donné
par,

η =
R0 I

2

IQ
=

R0
(ε2 − ε1)

2
∆T 2

(R+R0)
2

(κ1 + κ2)
A

d
∆T + T+ (ε2 − ε1)

2 ∆T

R+R0

qui peut être mis sous la forme,

η =
∆T

T+

R0

R

(κ1 + κ2)

T+ (ε2 − ε1)
2

(
1

σ1
+

1

σ2

)(
1 +

R0

R

)2

+

(
1 +

R0

R

)
À l’aide de la définition du coefficient ζ > 0, de la différence de température
∆T = T+ − T− > 0 et du rapport r = 1 + R0/R > 0, le rendement se
réduit à,

η =

(
1− T−

T+

)
r − 1

ζ−1 r2 + r

Afin de trouver la résistance de charge optimale, on doit optimiser le ren-
dement η par rapport au rapport r,

dη

dr
=

(
1− T−

T+

)
ζ−1 r2 + r − (r − 1)

(
2 ζ−1 r + 1

)
(ζ−1 r2 + r)

2 = 0

ce qui implique que,
r2 − 2 r − ζ = 0

Ainsi, le rapport optimal r > 0, est donné par,

r = 1 +
√

1 + ζ

Par conséquent, pour une résistance de charge optimale, le rendement est
donné par,

η =

(
1− T−

T+

)
ζ
√
1 + ζ(

1 +
√
1 + ζ

)2
+ ζ

(
1 +

√
1 + ζ

) ⩽ 1− T−

T+

Dans la limite ζ → ∞, le rendement du générateur Peltier η tend vers le
rendement de Carnot ηC (7.63),

lim
ζ→∞

η = 1− T−

T+
= ηC

14.4 Jonction thermoélectrique

On considère un barreau constitué de deux métaux différents A et B
d’épaisseur d en contact thermique. Les métaux sont définis par leur conducti-
vité électrique σA ou σB , leur conductivité thermique κA ou κB , et leur coeffi-
cient Seebeck εA ou εB . Ces propriétés peuvent toutes être considérées comme
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indépendantes de la température. L’extrémité du métal A est en contact avec
un bain thermique à haute température et l’extrémité du métal B est en contact
avec un bain thermique à basse température, ce qui impose une différence de
température ∆T à travers le barreau. Une densité de courant électrique jq
constante traverse le barreau. On mesure une différence de potentiel électro-
statique ∆φ entre les extrémités du barreau (fig. 14.2).

Fig. 14.2 Un courant électrique traverse un barreau formé de deux métaux différents A
et B en contact électrique. La figure indique les variations de potentiel électrostatique et de
température à travers chaque métal. L’origine de l’axe Or est située à la jonction entre les
deux métaux.

Par conservation de la charge électrique en régime stationnaire, la densité de
courant électrique jq et la densité de courant de chaleur jQ sont conservées
à la jonction entre les métaux A et B, c’est-à-dire que jq = jqA = jqB et
jQ = jQA

= jQB
. Le courant électrique I qui traverse les métaux A et B est

l’intégrale des densités de courant jqA et jqB sur la surface A de la section,

I =

∫
S

jqA · dS =

∫
S

jqB · dS

où le vecteur de surface infinitésimale dS est orienté le long de la densité de
courant électrique jq. Le courant de chaleur IQ exercé sur les métaux A et B
est l’intégrale des densités de courant de chaleur jQA

et jQB
sur la surface A

de la section,

IQ =

∫
S

jQA
· dS =

∫
S

jQB
· dS

Les différences de température ∆TA et ∆TB , et les différences de potentiel
électrostatique ∆φA et ∆φB à travers les métaux A et B sont données par,

∆TA =

∫ 0

− d

dr · (−∇TA) et ∆TB =

∫ d

0

dr · (−∇TB)

∆φA =

∫ 0

− d

dr · (−∇φA) et ∆φB =

∫ d

0

dr · (−∇φB)

où le vecteur de longueur infinitésimale dr est orienté le long de la densité de
courant électrique jq et de la densité de courant de chaleur jQ. La différence
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de température ∆T et la différence de potentiel électrostatique ∆φ à travers
tout le barreau satisfont,

∆T = ∆TA +∆TB et ∆φ = ∆φA +∆φB

Les métaux A et B ont une longueur d et une section de surface A. Ainsi,

d =

∫ 0

− d

dr · r̂ =

∫ d

0

dr · r̂ et A =

∫
S

dS · r̂

où r̂ est le vecteur unitaire orienté de la gauche vers la droite dans le même
sens que la densité de courant électrique jq et la densité de courant de chaleur
jQ.

1) Exprimer les équations de transport de la charge électrique et de la cha-
leur (12.117) pour les métaux A et B à la jonction entre les métaux en
termes des forces généralisées ∇TA, ∇TB , ∇φA, ∇φB et de la tempéra-
ture TAB evaluée à la jonction entre les métaux.

2) Si l’épaisseur d des métaux est suffisamment petite, les gradients peuvent
être considérés comme indépendants de la position. Dans ce cas, intégrer
l’équation de transport de la charge électrique entre les extrémités des mé-
taux A et B.

3) Dans ce même cas, intégrer l’équation de transport de la chaleur entre les
extrémités des métaux A et B.

4) En déduire les expressions de ∆TA et ∆TB en termes de I, ∆T et des
coefficients phénoménologiques.

5) En déduire les expressions de ∆φA et ∆φB en termes de I, ∆T et des
coefficients phénoménologiques.

6) Déterminer l’expression de ∆φ en termes de TAB , I, ∆T et des coefficients
phénoménologiques.

14.4 Solution

1) Les équations de transport de la charge électrique à travers les métaux A
et B à la jonction entre ces métaux s’écrivent,

jqA = −σA εA ∇TA − σA ∇φA

jqB = −σB εB ∇TB − σB ∇φB

De manière similaire, les équations de transport de la chaleur à travers les
métaux A et B à la jonction entre ces métaux s’écrivent,

jQA
= −κA ∇TA + TAB εA jq

jQB
= −κB ∇TB + TAB εB jq

2) Les intégrales des équations de transport de la charge électrique sur le
volume sont le produit des intégrales sur la section de surface A et des
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intégrales sur la longueur d des métaux,∫
S

jqA · dS
∫ 0

− d

dr · r̂ = σA εA

∫ 0

− d

dr · (−∇TA)

∫
S

dS · r̂

+ σA

∫ 0

− d

dr · (−∇φA)

∫
S

dS · r̂∫
S

jqB · dS
∫ d

0

dr · r̂ = σB εB

∫ d

0

dr · (−∇TB)

∫
S

dS · r̂

+ σB

∫ d

0

dr · (−∇φB)

∫
S

dS · r̂

En utilisant les relations intégrales pour I, ∆TA, ∆TB , ∆φA et ∆φB , l’inté-
grale de l’équation de transport de la charge électrique à travers les métaux
A et B peut être mise sous la forme suivante,

I =
A

d
(σA εA ∆TA + σA ∆φA) =

A

d
(σB εB ∆TB + σB ∆φB)

3) Les intégrales des équations de transport de la chaleur sur le volume sont
le produit des intégrales sur la section de surface A et des intégrales sur la
longueur d des métaux,∫

S

jQA
· dS

∫ 0

− d

dr · r̂ = κA

∫ 0

− d

dr · (−∇TA)

∫
S

dS · r̂

+ TAB εA

∫
S

jqA · dS
∫ 0

− d

dr · r̂∫
S

jQB
· dS

∫ d

0

dr · r̂ = κB

∫ d

0

dr · (−∇TB)

∫
S

dS · r̂

+ TAB εB

∫
S

jqB · dS
∫ d

0

dr · r̂

En utilisant les relations intégrales pour IQ, I, ∆TA et ∆TB , l’intégrale de
l’équation de transport de la chaleur à travers les métaux A et B peut être
mise sous la forme suivante,

IQ = κA
A

d
∆TA + TAB εA I = κB

A

d
∆TB + TAB εB I

4) En utilisant la relation ∆TB = ∆T − ∆TA dans l’équation de transport de
la chaleur, on obtient,

κA ∆TA + TAB εA
d

A
I = κB (∆T − ∆TA) + TAB εB

d

A
I

qui peut être mis sous la forme suivante,

∆TA =
εB − εA
κA + κB

TAB
d

A
I +

κB

κA + κB
∆T
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En utilisant la relation ∆TA = ∆T − ∆TB dans l’équation précédente, on
obtient,

∆TB =
εA − εB
κA + κB

TAB
d

A
I +

κA

κA + κB
∆T

5) En substituant l’expression pour ∆TA dans l’équation de transport de la
charge électrique, on obtient,

I = σA
εA (εB − εA)

κA + κB
TAB I + σA

εA κB

κA + κB

A

d
∆T + σA

A

d
∆φA

qui peut être mis sous la forme suivante,

∆φA =

(
1

σA
− εA (εB − εA)

κA + κB
TAB

)
d

A
I − εA κB

κA + κB
∆T

De manière similaire, en substituant l’expression pour ∆TB dans l’équation
de transport de la charge électrique, on obtient,

I = σB
εB (εA − εB)

κA + κB
TAB I + σB

εB κA

κA + κB

A

d
∆T + σB

A

d
∆φB

qui peut être mis sous la forme suivante,

∆φB =

(
1

σB
− εB (εA − εB)

κA + κB
TAB

)
d

A
I − εB κA

κA + κB
∆T

6) Une expression de la différence de potentiel électrostatique ∆φ entre les
extrémités du barreau est obtenue en substituant les expressions pour ∆φA

et ∆φB dans l’équation ∆φ = ∆φA +∆φB ,

∆φ =

[(
1

σA
+

1

σB

)
+

(εA − εB)
2

κA + κB
TAB

]
d

A
I − εA κB + εB κA

κA + κB
∆T

Le premier terme entre crochets représente la loi d’Ohm. Le dernier terme
de l’équation représente l’effet Seebeck. Le deuxième terme entre crochets
a pour origine les gradients thermiques dans chaque métal, même dans le
cas où ∆T = 0

(2)
.

(2)
L. Gravier, S. Serrano-Guisan, F. Reuse, J.-Ph. Ansermet, “Spin-Dependent Peltier Effect
of Perpendicular Currents in Multilayered Nanowires”, Phys. Rev., B 73, 2006, 052410.


